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ABSTRACT 
Failure to detect significant drug interactions may result in adverse outcomes.  While proper screening and 
management of drug interactions can prevent the majority of adverse events, studies indicate that current practice is 
suboptimal.  In the last quarter of 2001, physicians and pharmacists in Kaiser Permanente Colorado (KPCO) 
developed an electronic critical drug interaction alert program.  Electronic screening was coupled with active 
intervention to prevent dispensing of critically interacting drug combinations. 
 
Rates of critical drug interactions were collected 20 months pre-intervention and 37 months post-intervention.  
Success of the intervention was based on the changes in the rates of critical drug interactions and statistically 
evaluated by segmented regression analysis (a powerful statistical method for estimating intervention effects in 
interrupted time series). 
 
This paper shows the application of segmented regression analysis to the critical drug interaction program.  

KPCO CRITICAL DRUG INTERACTION PROGRAM BACKGROUND 
A drug-drug interaction occurs when the effects and/or kinetics of one drug are altered by the co-administration of a 
second drug.  The incidence of clinically significant interactions in the outpatient setting ranges from 0.6% to 23.3%.  
Failure to detect significant drug-drug interactions may result in adverse outcomes for patients and increased health 
care costs.  It has been reported that drug interactions cause up to 2.8% of hospitalizations each year, resulting in an 
estimated annual cost of $1.3 billion. 
 
Although proper screening and management of drug-drug interactions can prevent the majority of adverse drug 
events, studies indicate that current practice is sub-optimal.  A large volume of clinically insignificant alerts can result 
in “alert fatigue”, and clinically significant alerts may be overridden.  In the last quarter of 2001, physicians and 
pharmacists in Kaiser Permanente Colorado (KPCO) collaborated to develop a program to identify and address 
critically interacting drugs.  To minimize the risk of bypassing significant alerts, electronic screening was coupled with 
active intervention to prevent dispensing of drug combinations that have the potential for serious adverse interactions.   
 
The objective of this study was to assess the impact of the Critical Drug Interaction program (CDIX).  We 
hypothesized that compared to a baseline period the rate of co-dispensing of drugs that critically interact in our health 
care system would be lower after the introduction of CDIX.  Eight drug combination pairs were chosen for analysis.  
These drug pairs were combinations that both pharmacists and physicians agreed were “never use” drug-drug 
combinations and had appropriate alternatives available. 
 
Monthly electronic outpatient pharmacy data were collected on these eight drug pairs between July 2000 and May 
2005; this time period includes 20 months before the program was implemented and 37 months after it was 
implemented.  KPCO members who received an outpatient dispensing from the medical office pharmacies for any of 
the eight drug pairs of interest during the study period were included in the analysis.  Segmented regression analysis 
was used to estimate changes in the rates of critical drug interactions.  Analyses were conducted using SAS® 9.1 
(SAS Institute, Carey NC). 

TIME SERIES REVIEW 
Time series refers to a large series of observations made on the same variable consecutively over time.  Time series 
analyses have traditionally been used for forecasting techniques in economics and business.  For example, 
forecasting techniques are used to predict product sales over time, employment rates over time or product inventory 
over time.  However, time series analysis may also be used to evaluate therapeutic effects in health care.   
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INTERRUPTED TIME SERIES 
Interrupted time series (ITS) is a special kind of time series that can be used to measure a treatment effect or the 
impact of an intervention.  The goal is to demonstrate a clear causal relationship between an intervention and an 
outcome after ruling out other forces that might have had the same outcome in the absence of the intervention.   
 
ITS are divided into at least 2 segments separated by an intervention.  The first segment includes a series of pre-
intervention observations that establish a baseline trend.  The intervention occurs at a known time and then is 
followed with a series of post-intervention observations from which we can analyze the impact of the intervention.   
 
Generally, 12 data points before the intervention and 12 data points after the intervention are needed which allow for 
the detection of seasonal variation within the data.  In addition, it is recommended to collect approximately 1,000 data 
points at each data point in order to achieve an acceptable level of variability. 
 
In our study, we were looking at the impact of the CDIX intervention on the rate of critically interacting drugs.  We 
collected 20 months of data prior to the intervention and 37 months of follow up data after the intervention in order to 
detect seasonality. 

SEGMENTED REGRESSION ANALYSIS 
Segmented regression analysis is a powerful method for estimating how much an intervention affects the outcome 
measure immediately and over time.  Segmented regression models fit a least squares regression line in each 
segment and assumes a linear relationship between the independent variable and the outcome within each segment.  
Data must be collected at equally spaced intervals over time for a segmented regression analysis.  Model 1 shows 
how a segmented regression will estimate changes in the rates of co-prescribing before the intervention and changes 
in the rates of co-prescribing after the intervention in our study: 
 

Ratet = β0 + β1*timet + β2*interventiont + β3*time after interventiont + et  (1) 
 
Where:   

• Ratet  is the rate of co-prescribing of critically interacting drugs 
• β0 estimates the baseline co-prescribing rate at the beginning of the study period 
• β1 estimates the change in co-prescribing rates that occur with each month before the intervention 
• time is a continuous variable indicating the number of months prior to and after the intervention.  It ranges 

from -20 months to 37 months 
• β2 estimates the change in the co-prescribing rate immediately following the intervention 
• intervention indicates whether or not the intervention had taken place during that time period (before the 

intervention is coded as interventiont  = 0 and after the intervention is coded as interventiont  = 1) 
• β3 estimates the change in the slope after the intervention compared to the slope before the intervention 
• time after intervention is a continuous variable indicating the number of months that have passed since the 

intervention was implemented.  This is coded as zero for all time periods prior to the intervention 
• et represents the random error.   

 
There are several components to consider when building our segmented regression model: visual inspection of the 
data, lagged effects, autocorrelation, and seasonality.   

BUILDING THE MODEL 
VISUAL INSPECTION OF DATA 
The graphical representation of the intervention is the first step when analyzing interrupted time series data.  This 
allows you to determine whether an effect is immediate or delayed, abrupt or gradual, and whether or not an effect is 
sustained over time.  The rates of co-prescribed critically interacting drugs are compared pre-intervention with post-
intervention, looking for changes in the series patterns.  Figure 1 shows the CDIX intervention program rate by month. 
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Also graphed is a “predicted regression line” to better see the trend of co-prescribing rates.  The predicted line was 
not analyzed; it was calculated for the visual representation only.  The predicted line was calculated as follows: 
 

proc genmod data=crit_intx; 
  model num_intx/totrx = intervention intervention*time/ 
        link=logit dist=binomial noint; 
  output pred=pred; 
run; 

 
Our graph shows a decreasing trend in the slope before the intervention, an abrupt drop in the rate immediately 
following the intervention, and then a gradually decreasing slope continues after the intervention.  These will be tested 
statistically once our final model is built. 

LAGGED EFFECTS 
The effect of an intervention may take time to appear.  The effect may occur several time periods after the 
intervention.  It is important to account for this “lag” in the analysis in order to avoid incorrect specification of the 
intervention effects.  Lag periods can be excluded from the analysis or they can be analyzed as a separate segment 
in the model. 
 
In our study the intervention was immediate through the electronic pharmacy system, therefore, no lag effects existed 
and they were not entered into our model. 

AUTOCORRELATION 
Ordinary least squares regression analysis assumes that error terms associated with each observation are 
uncorrelated.  Prescribing patterns and other health outcomes at two time points that are close to each other may be 
more similar than outcomes at two time points further apart, resulting in serial autocorrelation of the error terms.  
Correlation between adjacent data points is termed first-order correlation; correlation between the current point and 
two months before or after would be second-order autocorrelation and so forth.  Failing to correct for autocorrelation 
may lead to underestimated standard errors and overestimated significance of the effects of an intervention.  If 
autocorrelation exists, we can control for it in our model. 
 
Autocorrelation can be detected visually by inspecting a plot of the residuals over time and by conducting statistical 
tests.  Randomly scattered residuals with no discernable pattern indicate no autocorrelation.  Positive correlation 
exists when consecutive residuals lie on the same side of the regression line; negative autocorrelation exists when 
consecutive residuals tend to lie on the different sides of the regression line. 
 
The residuals were graphed using the following code: 

Critical Drug Interaction Rate by Month
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Figure 1.  Critical Drug Interaction Rate by Month
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proc reg data=crit_intx; 
  model rate = time intervention time_af_int/dw; 
  plot rstudent.*obs. 
    /vref= -1.714 1.714 cvref=blue  lvref=1 
  href = 0 to 60 by 5 chref=red cframe=ligr; 
  plot predicted.*residual.; 
run; 

 
which produced the residual plot below.  The plot shows no discernable pattern in the residuals: 
 

rat e10000 = 28. 139 -0. 3396t i me2 -6. 4669i nt ervent i on +0. 1666t i me_af _i nt
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Autocorrelation can also be detected by the Durbin-Watson statistic.  The Durbin-Watson statistic tests for serial 
correlation of the error terms in the regression model.  Values close to 2.0 indicate no serious autocorrelation.  If the 
statistic is significant, the model can be adjusted by estimating the autocorrelation parameter and including it in the 
segmented regression model.   
 
PROC AUTOREG has an option to use the Durbin-Watson statistic and test for autocorrelation: 
 

proc autoreg data=crit_intx; 
  model rate=time intervention time_af_int/ dwprob; 
run; 
 

The Durbin-Watson statistic for the regression model of the CDIX was 2.0173 (p-value for hypothesis of negative 
autocorrelation = 0.6356, p-value for hypothesis of positive autocorrelation = 0.3644), indicating no autocorrelation 
and confirming our visual inspection of the residual graph. 
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                                Ordinary Least Squares Estimates 
 
                 SSE                 1111.28298    DFE                       53 
                 MSE                   20.96760    Root MSE             4.57904 
                 SBC                 347.233692    AIC               339.061487 
                 Regress R-Square        0.6826    Total R-Square        0.6826 
                 Durbin-Watson           2.0173    Pr < DW               0.3644 
                 Pr > DW                 0.6356 
NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is the p-value for 
      testing negative autocorrelation. 
 

SEASONALITY 
Time series sometimes exhibit seasonal fluctuations.  For example, prescribing in January of one year is more similar 
to prescribing in January a year ago than to prescribing in other months.   Another example would be variation in drug 
utilization due to treatment of illnesses that vary by season, therefore, in order to detect seasonality, at least 24 
monthly data points are required.  If seasonality exists, it is important to control for it when estimating intervention 
effects so that the intervention effects are more likely to represent true intervention effects.   
 
Another way to look at seasonality is to look at whether or not our data is stationary.  If a series is stationary then the 
mean is constant over time, the variance of our outcome is constant over time, and the covariance between our 
outcome at different time periods must match.  If the series has a seasonality or some other non-stationary pattern, 
the usual solution is to take the difference of the series from one period to the next and then analyze this differenced 
series.  Sometimes a series may need to be differenced more than once or differenced at lags greater than one 
period.   
 
We tested for seasonality/stationarity using the Dickey-Fuller unit root test in PROC ARIMA using the following code:   
 

proc arima data=crit_intx; 
  identify var=rate stationarity=(dickey=0); 
quit;run; 
 

The identify statement specifies the time series to be modeled and “var” names the variable containing the outcome 
to analyze.  The stationarity option with a dickey test is specified next.  A value of zero lets SAS automatically 
compute the lags that would be necessary.   
 
The null hypothesis is tau is not stationary.  The output shows the following results.  In looking at the “Single Mean” 
line, we conclude that the series is stationary and we do not need to correct for seasonality/stationarity with 
differencing. 
 
                                 Dickey-Fuller Unit Root Tests 
 
    Type           Lags         Rho    Pr < Rho        Tau    Pr < Tau          F    Pr > F 
 
    Zero Mean         0     -3.9062      0.1701      -1.53      0.1179 
    Single Mean       0    -17.5830      0.0137      -3.16      0.0274       5.04    0.0404 
    Trend             0    -46.0607      0.0001      -6.10      <.0001      18.62    0.0010 

ANALYSIS AND INTERPRETATION OF THE MODEL 
We learned in the previous section that we did not need to correct for lagged effects, autocorrelation or seasonality.  
Therefore, our final model will be specified exactly how we defined it for Model 1 above: 
 

Ratet = β0 + β1*timet + β2*interventiont + β3*time after interventiont + et  (1) 
 
We will interpret the “level” and “trend” in our results and along with the visual graph make conclusions. 
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LEVEL 
The level is the value of the series at the beginning of a given time interval (i.e., on our graph, it is the intercept of the 
series on the y axis).   If there is a change in the values following intervention, the change is called a change in level 
or intercept, because 1) the level of the series drops and, 2) the pre- and post-treatment slopes would have different 
intercepts.  This would constitute an intervention effect.  

TREND 
The trend is the rate of change of a measure or the change in slope.   A change in trend is observed by an increase 
or decrease in the slope of the segment after the intervention as compared with the segment preceding the 
intervention. 
 
Although differences in trend and level can be detected visually, statistical tests still need to be run in order to 
detected if the differences are the result of chance alone or factors other than the intervention. 

PROC AUTOREG MODEL 
Our model was specified in PROC AUTOREG to estimate the changes associated with the intervention while 
controlling for baseline values. 
  

proc autoreg data=crit_intx outest=est; 
  model rate=time intervention time_af_int/method=ml; 
run; 

 
The output from the model reveals: 
 
                                        Final ITS Model 
 
                                     The AUTOREG Procedure 
 
                                Dependent Variable    rate 
 
 
                                Ordinary Least Squares Estimates 
 
                 SSE                 1111.28298    DFE                       53 
                 MSE                   20.96760    Root MSE             4.57904 
                 SBC                 347.233692    AIC               339.061487 
                 Regress R-Square        0.6826    Total R-Square        0.6826 
                 Durbin-Watson           2.0173 
 
 
                                                  Standard                 Approx 
              Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
              Intercept        1      28.1392       2.1271      13.23      <.0001 
              time             1      -0.3396       0.1776      -1.91      0.0612 
              intervention     1      -6.4669       2.5010      -2.59      0.0125 
              time_af_int      1       0.1666       0.1911       0.87      0.3872 

 

OUTPUT 
The intercept variable (measuring our level) shows that just before the beginning of the observation period, the rate of 
critical drug interactions was 28.1 per 10,000 prescriptions.  The time variable (measuring our trend) shows that 
before the intervention, there was no significant month-to-month change in our trend, i.e., the mean number of critical 
drug interactions (p-value for baseline trend = 0.0612).  The intervention variable (measuring our level after the 
intervention), shows that immediately following the intervention the rate of critical drug interactions significantly 
dropped by 6.5 prescriptions per 10,000 (p=0.0125).  The time_af_int variable (measuring our trend after the 
intervention – sustainability) shows no significant change in the month-to-month trend in the mean number of critical 
drug interactions after the intervention (p-value for trend change = 0.3872).  After stepwise elimination of non-
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significant terms, the most parsimonious model contained only the intercept and the significant level change in the 
mean number of critical drug interactions. 

ADVANTAGES 
Although the gold standard for study design is the randomized control trial, it’s not always feasible or ethical to 
randomize patients or find suitable controls.  Interrupted time series is a great alternative since patients can serve as 
their own controls and, in general, you have the power to test and correct for seasonal patterns and outliers.  The 
visual representation of interrupted time series allows you to see the response to an intervention and whether the 
effect of that intervention can be sustained over time.  Segmented regression analysis easily allows you to control for 
prior trends and analyze the response to an intervention.  Estimating the size of the effect at different time points and 
changes in the trend over time can also be estimated using segmented regression analysis. 

DISADVANTAGES 
The model used in this paper assumed the outcome in each segment followed a linear trend.  Linear trends may not 
hold over long time periods and changes may follow non-linear patterns.  Although it is recommended that 
approximately 1,000 data points be collected in each time period, our outcome was rare and we did not collect that 
many.   

CONCLUSION 
Segmented regression analysis of interrupted time series data is a robust modeling technique that allows the analyst 
to estimate dynamic changes in various processes and outcome following interventions intended to change 
medication use, while controlling for secular changes that may have occurred in the absence of the intervention. 
 
The use of the segmented regression analysis showed that employing an intervention system that limits electronic 
alerts regarding drug-drug interactions to those deemed critical but also required pharmacist intervention and 
collaboration with the prescriber decreases the number of critical drug interaction dispensed. 
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